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Hysteresis and magnetization jumps in theT =0 dynamics of spin glasses
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We present results from Monte Carlo simulations of hysteresis in the zero-tempdfatuedynamics of
the Sherrington-Kirkpatrick spin glass model. We study the statisticsagfnetization-jump&lenoted ag\m)
in response to a time-dependent magnetic fiélt), which increases or decreases with constant increnents
asH(t)—H(t)+A. In particular, we focus on the field dependence of Ame-distribution functionP(Am,H).
We formulate arguments to understand the variatiorP@m,H) along the hysteresis loop in the weak-

disorder limit.
DOI: 10.1103/PhysReVvE.71.026105 PACS nun®er05.50-+q, 05.90-+m
[. INTRODUCTION H < 0. Thus the resultant hysteresis loop is rectangular, with

discontinuities inm at H=+zJ.

Of course, real ferromagnets are not pure and often con-
. ) . Main impurities. Let us focus on the case of quenched disor-
to anme—dependent mallgngtlcf]éllﬂ. Ir_1 many expenm_emal der, which corresponds to the case of immobile impurities.
situations, the maQ”et'C f_|eld IS _penodlc in time wi(t . The free-energy landscape is drastically modified by the
*+to) =H(t), wheret, is the time period. The plot of magneti- resence of disorder, and is characterized by a large number
zation per spirm(t) vs H(t) is referred to as thé@ysteresis  of metastable minima with a distribution of barrier heights
loop. In pure ferromagnetic systems, hysteresis occurs bg 5). Consider theT=0 hysteresis of disordered systems,
cause of the existence of metastable states in the vicinity of @here there are no fluctuation-induced transitions across
first-order phase transition. For example, the down state igee-energy barriers. Transitions occur only when the change
metastable foHy(T)>H>0, where the metastability limit i, magnetic field eliminates a metastable state where the sys-
Hs(T) depends on the temperatufe The timescale of tran- tem is trapped. The system then evolves to a neighboring
sition to the stable up state; depends orH, T, and the metastable state, and so on. Thus the rectangular loop of the
intrinsic spin-flip timescaler;. Thus the system response is disorder-free magnet is replaced by a smoother loop consist-
determined by the competition between the experimental tiing of a series of magnetization jumps or avalanches, which
mescale(ty) and 7. In the limit 75/t,— 0, the spins have are referred to aBarkhausen noisg6,7]. Apart from ferro-
enough time to align with the external field and the magnemagnetic materials, a wide variety of experimental systems
tization exhibits a discontinuity ati=0. In this case, the such as martensit¢8] and superconducting filn{®] exhibit
“hysteresis loop” is a step function. Whew/t,~O(1), the  related phenomena.
field changes appreciably before the spins readjust, leading In this paper, we focus on hysteresis and magnetization-
to well-defined hysteresis loops. Finally, in the lim{/ty  jump distributions in thelT=0 dynamics of spin glasses. In
— o, the spins cannot respond to the field and no hysteresiSec. Il, we review some studies =0 hysteresis in model
loops are observed at all. disordered systems. In Sec. lll, we present numerical results

TheT=0 limit is relevant in many experimental situations obtained from Monte Carl¢MC) simulations of hysteresis
[2,3] where the barriers to domain flipping are too large to ben the Sherrington-KirkpatricKkSK) spin glasg10]. In par-
overcome by fluctuations. Consider the two-state Isingicular, we study magnetization-jump distributions along the

An important nonequilibrium property of magnetic mate-
rials is hysteresisi.e., the delayed response of a spin syste

model for anN-spin systen{S}: hysteresis loop. In Sec. lll, we also present arguments to
understand the nature of these distributions at diffefént
H=-3D SS - HH> S, S=+1, (1)  values. Finally, Sec. IV concludes this paper with a summary.
(i) i
where J is the exchange coupling, ar@) denotes a sum Il. OVERVIEW OF RELEVANT RESULTS
over nearest-neighbor pairs. Féi(t) <0, all spins are Consider the Ising Hamiltonian with quenched disorder

aligned in the stable sta®=-1. AsH(t) is increased, this gnq a time-dependent external field:
state continues to be metastable ffT=0)=zJ>H(t) >0,
wherez is the coordination numberAt T=0, the timescale
for escape from the metastable stategs~. The local field H=- 2 JiS§ - 2 [Ht) +Hi]S, S=+1, 2

at each siteh, =H(t)—zJ becomes positive fdr(t) >zJ and = =

the spin flips into the up state spontaneously, i.e., with where we have introduced disorder V& random exchange
=0 assuming that the intrinsic timescaje<t,. The opposite couplings or bonds);, and(b) a random magnetic fielth;.
scenario arises when the fiekld(t) changes fromH>0 to  In Eq.(2), we have allowed for the possibility of long-ranged
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exchange interactions. The Ising Hamiltonian does not havepin flips may occur during an avalanche as there are also
intrinsic dynamics so we associate stochastic kinetics byntiferromagnetiqJ; <0) bonds in the system. These re-
placing it in contact with a heat baft11]. The appropriate verse flips destroy the partial ordering of metastable states
stochastic kinetics for the ferromagnet is Glauber spin-flipyhich results in the RPM property. Vives and Planes also
kinetics, where an arbitrary spin is flipped &s—-S. For  studied the avalanche distributions averaged over the entire
T=0 dynamics, the spin flip is accepted only if the systemcycle which we denote a®,,(s,J). They found results
energy decreases. We consider a situation wheéf® is  ah510g0us to those for the RFINE) There is a critical value
changed slowly from e—o (§=-1—+101) or = 3 (inynits ofJy) whereP,,(s,Jo) ~ s, with 9= 1.45 for the
—=o(§=+1--111). . d=2 RBIM. (2) ForJ<J, (weak disorder, P,,(s,J) decays
Let us first discuss the case of the nearest-nelghbo&OWer than a power law witR,,~s % (\>0) for small

random-field Ising modelRFIM), whereJ;;=J wheni, j are . . o
nearest neighbors, and 0 otherwise. An important study 0Yalues ofs. There is also a peak corresponding to an infinite
the T=0 dynamics is due to Sethreh al.[12]. In their study, avalanche. On the other.hand,_ far- J, (stro_r;g sdlsorde)r
the magnetic field was changed adiabatically, i.e., till thePini(S;J) decays exponentially with asPin~s e (A <0).
occurrence of the first spin-flip. They clarified the following Subsequently, Vivest al. [14] studiedT=0 hysteresis in a

properties of hysteresis loops in the RFIM: range of disordered spin models, and confirmed that the
(1) The loops exhibitreturn-point memory(RPM). As- ~ above scenario is rather universal.
sume that the increasing field(t) is stopped at a valuel,, Finally, let us consider hysteresis in spin glasses, e.g., the

and then decreased b Now, if the field is again increased RBIM with Gaussian disorder and,=0 in Eq. (3). The
to H,, the system returns to precisely the same state as b@earest-neighbor spin glass or the Edwards-Anderson model
fore. The RPM property holds for all sub-loops, sub-sub-{4] (with J,=0) corresponds to the strong-disorder limit in
loops, etc., in the original hysteresis loop. the Vives-Planes studyl3]. Thus we expect the avalanche

(2) The hysteresis loops are characterized by avalanchegdjstributions to decay exponentially in this case. It is also
corresponding to transitions between metastable states in thielevant to study hysteresis in the SK spin glass model where
energy landscape. Consider an increment in the external fielll spins interact with each other, and one might expect a
H(t). Typically, a spin flipg(§ — —S) because of a change in mean-field approach to be useful. In early work, Souketis
sign of the local fieldhi=J2jeL§+H(t)+Hi, whereL, refers  al. [15] demonstrated the existence of hysteresis in the SK
to the nearest neighbors of siteThis spin flip modifies the Model by numerically studying the free-energy landscape.
local fields at other sites, leading to an avalanche which stops N more recent work, Pazmaneit al. [16] (PZZ) studied
when no further spins remain to be flipped. These avalanches=0 hysteresis in the SK model with an adiabatic magnetic
are associated with Barkhausen noise observed in magnefi€!d. PZZ argued that the SK model exhibiielf-organizeg
materials[6,7]. critical behavior, P(s,H)~s " with 7=1.0, everywhere

(3) Sethnaet al. made a detailed study of the avalanchealong the hysteresis loop. This should be contrasted with the
statistics. Let?, denote the variance of the Gaussian randonRFIM and RBIM, where power-law behavior arises at a criti-
field in units of J2. For weak disorder withr, < o, the hys- ~ cal point in parameter space. We can paraphrase the PZZ
teresis loop is discontinuous at some field valier,) due ~ argument as follows. A spin fli —-S; changes the local
to an infinite-sized avalanche. This is a remnant of the rectfield at sitei by 2J; ~ N2 Therefore an avalanche occurs
angular loop arising forr,=0, corresponding to the pure When the external field is increased By, ~N"2 Let
ferromagnet. The infinite avalanche survives uptg=o,, AM=(s)/N denote the average change in the magnetization
and we denotél(co)=H,. For o,> o, the hysteresis loop is due to the avalanche. Thedm/dH~ ((s)/N)N"2=N""s).
continuous and is characterized by small avalanches. The numerical results of PZZ showed tlut/ dH is smooth

(4) The point(o,,H,) is a critical point with a power-law everywhere, i.e., there is no system-sized avalanche. This
distribution of the avalanche size P(s, o,H,) ~s 7, where ~ occurs wher(s) ~ N2, so the scale of the distribution for all
0.=2.23], 7=1.6 for thed=3 RFIM. There are corrections H values is set by the system size rather than a tunable pa-
to scaling for(o,H) near (o.,H,), and the corresponding rameter. PZZ interpret this as a signatureseff-organized
P(s) exhibit power-law behavior up to a cutoff scale which criticality (SOQ.
diverges ago,H) — (o, H.). Analogous statements hold for Finally, we mention two recent works in this context.
the distribution of avalanche duratiof&2]. Katzgraberet al. [1_7] have studiedreversal-field memory

Next, consider the case of the random-bond Ising mode®ffects in(a T=0 simulations of the nearest-neighbor spin
(RBIM), whereH,=0 in Eq.(2). An early study of hysteresis glass, and_(b) experiments on thin films containing Co
in the nearest-neighbor RBIM with an adiabatic magneticF&0s particles. Further, Deutsch and Narayas] demon-
field is due to Vives and Pland&3]. These authors under- strated that multiple cycles are often necessary for loop clo-
took d=2 MC simulations of this model with a Gaussiap ~ SUre in nearest-neighbor spin glasses if the external field is

distribution: cycled between two moderate values, i.e., the system is not
) driven to saturation.
1 (Jj = Jo)
P(Jjj) = =—=exp - > | (3
\2mJ? 2] Ill. DETAILED RESULTS
with averagel, and variance)®. They found that the RBIM As stated earlier, we focus on=0 hysteresis in the SK

does not exhibit the RPM property. This is because reversmodel here. However, our protocol for changing the mag-
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netic field is different from that of PZZ16]. In our study, the I—5
magnetic field is incremented by a fixed amodntin anal- s+ 005

. . . . 0.5]|=- 002
ogy with experiments. Then, the natural response variable is

-= 001
the magnetization jumpm, which consists of multiple or go /
single avalanches, depending on the valué ofVe investi- i
gate the variation of the distributid®Am,H) along the hys- 0.5
teresis loop. In the limitN— o, we expectP(Am,H) to ap-
proach a delta function. However, for finite systems, we find 2 -1 0
that there is a strong dependence which can be understood
quantitatively in the weak-disorder limit. =0] T
Let us now provide details of our MC simulations. We
study the SK Hamiltonian with spin-flip kinetics. The ex-
change coupling obeys the Gaussian distribution in BJ. g0 1,
with J,=0 and variancd=J/N2. At T=0, the energy scale /
is set byJ. We will subsequently sei=1, and all relevant 05 T
quantities will be measured in units 8f The initial state of 1 f L ©
the system corresponds &0)=-1 O i asH(0)=-o. The -1 05 0 05 1
field is increased fronH—H+A, and the followingT=0 H
MC procedure is implemented. After each field increment, gG. 1. (g Hysteresis loof m vs H) obtained fromT=0 MC
we calculate the local field$y=2;J;§+H(t). A randomly  simylations of the SK spin glass in a magnetic field. Details of the
chosen unstable spin withS <0 is flipped to -S. Depend-  simulation are provided in the text. The figure superposes data for
ing on the value ofA, there may be a number of unstable A=0.1,0.05,0.02,0.01, as denoted by the specified line ty(ns.
spins. This spin flip changes the local field at each sitepiot of dm/dH vs H for the data shown irfa). (c) Hysteresis sub-
thereby affecting the stability of other spins. The local fields|oops when the magnetic field is reversedHat0.5,0.25. The in-
are computed again and another spin wit§ <O is flipped.  crement size ia=0.01.
This process is continued till there are no sites remaining
with h;§ < 0. We designate the old and new configurations as Let us first study the hysteresis loops. In the zero-disorder
{S} and{S'}, respectively. There are three relevant physical(infinite A) limit, the spins are uncoupled and the corre-
quantities: (1) The magnetization jumpAm=2;(S§ -S)/N. sponding hysteresis loop is a step function. As the disorder
(2) The total number of spin flips in either direction as aamplitude is increase@r A is decreasedthe loop opens out
fraction of the system size, which is denotedrag3) The  due to trapping in local metastable states, which differ from
jump duration or the number of MC step@CS) before the  each other by small groups of spins. There is a distribution of
system equilibrates in the new field. barrier heights separating these minima. Typically, configu-
The hysteresis loop can be closed by repeating the abovétions in the free-energy landscape differ by clusters of
procedure in the opposite direction, i.él=——o. Our  O(N*?) spins, with an associated barrier enegy~ N**in
MC results were obtained for systems w1000 spins. the SK model[5]. The MC simulations of Mackenzie and
We have confirmed that the hysteresis loops and their prop¥oung [20] demonstrate that the barrier distribution is ap-
erties remain unchanged for larger valuesNof The data  proximately uniform up to this level. In the presence of a
presented here is obtained as an average over 20 hysteres@stant magnetic fieldll, the energy associated with a spin
cycles for 800 disorder configurations. This statistics provesluster iSEq,5~ NY“H, so thatE,g Egis~ H.
adequate to obtain smooth numerical results, as we demon- In Fig. 1(a), we plotmvs H for A=0.1,0.05,0.02,0.01 —
strate shortly. as expected, the hysteresis loops superpose. The loops are
Before proceeding, we compare our MC procedure withsmooth because of the averaging procedure. Each individual
that of PZZ[16]. In the PZZ study, the magnetic field was realization is characterized by irregular steps which corre-
changed adiabatically, i.e., the magnetic field was increasespond to discrete jumps. In Fig(l, we plotdm/dH vs H
(or decreaseduntil the least stablespin flipped. This results for the data shown in Fig.(&). This plot quantifies the av-
in a spin-flip avalanche, and the statistics of these avalanchesage magnetization jump at different field values. Finally, in
displays SOC, as discussed earlier. The typical field increFig. 1(c), we plotmvs H again forA=0.01. However, in this
ment required to trigger an avalanchedis,,~ N2 In our  case, the fields are reversedt0.5, 0.25, and the loops are
study, the fixed parametér may be either comparable to or seen to exhibit the RPM property.
much larger tham\pz,. Hence we use the termagnetization At this stage, it is relevant to query whether the shape of
jump rather thanavalancheto characterize the system evo- the hysteresis loops can be understood in the framework of
lution. For A> Ap,,, Wwe measure the averaged statistics ofmean-field(MF) theory. For the RFIM with long-ranged ex-
N,~ A/Apzz multiple interacting avalanches. This averagingchange interactions, there is an elegant MF argument due to
implies that the distributions of these jumps can be underSethnaet al.[12] which yields the loop shape and the critical
stood in the framework of amdependent spin approxima- exponents. The situation is far more difficult for the SK spin
tion. On the other hand, fok ~ Ap,, our results are analo- glass, as it is known that naive MF theory is not valid below
gous to those of PZZ, and earlier results by Bertotti andhe Almeida-Thouless line in th@,H) plane[5]. The naive
Pasqual¢19]. Thus this study is complementary to the work MF prediction for the local-field distribution in the SK spin
of PZZ. glass has the Gaussian fofi2il]:

05 -
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FIG. 2. Probability distributionsP(x,H) vs x with x=Am or n,
for the field incremenH —H+A. The system size wa=1000,
andA=1.0. The solid line superposed on the data set®fam,H)
is the binomial distribution in Eq(8) with p obtained from(Am)
for the numerical data. The different frames correspondajoH
=-1.0, p=0.395; (b) H=0.0, p=0.603; (c) H=1.0, p=0.019; (d)
H=2.0,p=0.001.

P(h;,H) =

(hi- H)Z}
vmex . (4)

20%

with variance 0?=qJ. Here, the Edwards-Anderson order

parameteq is obtained fron{g=(kgT) ']

_F dz
q —oo\’2

g7 tanif[B(H + 3Vq2)]. (5)

However, this Gaussian distribution is not even qualita-

tively reasonable aT=0. This is due toreplica-symmetry
breakingand has been studied extensivgEd). There are ar-
guments and simulationg22—24 which demonstrate that

I~3(hi,H) develops nonanalytic behavior at=0. An empiri-
cal form for P(h;,H) at T=0 is obtained as followg23,24]:

fil | (b= H>2]
20(H)>? 20(H)>?

H2 EH H/(\20)
S Y
20° o Jo

Here, the scale af(H) is set byJ, ando(0) = 1.28[22]. The

P(h;,H) =

(6)
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ferent field strengthd;1=-1.0,0.0,1.0,2.0. Here, the distribu-
tions correspond to the stepl—H+A, where A=1.0
>Ap;7~0.03 for N=1000. The distributions in Figs.
2(a-2(d) show a strongH dependence, with a crossover
from a bell-shaped function to a monotonically decaying
function. The distributions?(Am,H) and P(n,H) show a
similar behavior withlAm) <(n), as expected. For small val-
ues of(Am) or {n), as in Figs. &) and 2d), the data sets for
P(Am,H) andP(n,H) superpose. The nature of these distri-
butions depends oH, A, and the system sizd. This can be
understood by the arguments presented belowrfdm, H).

When the field is increased from— H+A, the probabil-
ity of the local fieldh; changing sign fronh; <0 toh;>0 is

p=f dh[P(h,H+A) - P(h,H)]=p(H,A).  (7)
0

In the strong-field limit, the magnetization jump consists of
multiple interacting avalanches and it is reasonable to as-
sume that the spins are approximately independent. Then, the
probability of NAm spins changing sign is obtained from the
binomial distribution as

NI
(NAM) | N(1 - Am)t P

with (Am)=p. The distribution?(Am,H) in Fig. 2 are fitted
to this functional form, withp being determined from the
numerical data. It is seen that E@®) provides a good de-
scription of P(Am,H) at strong field amplitudes, where the
independent-spin approximation applies.

It is useful to approximate the binomial distribution for
large N as follows[25]:

() Gaussian limit This arises forNp— o~ asN—o

(p nonzerg. Then, we obtain the Gaussian distribution:

N(Am - p)?
A =\ 5 F{ } ©

2p(1-p)

The variancep(1-p)/N—0 asN—o and the distribution
becomes sharply peaked &m=p.

(b) Poisson limit This arises forNp finite asN— oo
(p—0). Then, Eq.(8) becomes the Poisson distribution:

(N )NAm

P(Am) - NAm(l _ p)N(l—Am),

8

~Np
(NAm)! ©

In a simulation involving a finite number of spiM§ one can
realize both the limiting cases in Eq®) and (10), depend-
ing on the values oH and A. This is demonstrated by the
data in Fig. 2.

The independent-spin approximation breaks down at
weak fields(or small A), where magnetization jumps arise

P(Am) =

(10

functional form ofo(H) is unknown and its dependence on due to single avalanches. In that case, 8j.is not a rea-

H and the order parameters are necessary inputs to computenable description of thim statistics. This is demonstrated

the hysteresis loop. Pazmaratial. [16] have used heuristic in Fig. 3, where we ploP(x,H) vs x for H=0— A with A

arguments to obtain weak bounds on the outer limit of the=1.0,0.5,0.2,0.1,0.05,0.025. We see that E®) fits

hysteresis loop. P(Am,H) rather well forA=1.0, 0.5. However, foA=0.2,
Next, let us discuss the magnetization-jump distributionshe binomial distribution is too sharply peaked in comparison

at different points along the loop. In Figsia2-2(d), we plot
MC data forP(x,H) vs x (with x=Am or n) with four dif-

with the numerical data. The disagreement is even stronger
for smaller values ofA, and we do not plot Eq8) in Figs.
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(a) A=1.0 (b) A=0.5 IV. SUMMARY AND DISCUSSION
20 20
Am ! rol . . .
15 2o 15 To summarize, we have studied hysteresis and
8 — — - . . . . . . _ .
T magnetization-jump distributions for thE=0 dynamics of
E 10— A~ -1 10 - the SK spin glass in a time-dependent magnetic field. The
= sk AN 4 sk W B field is incremented in equal steps, and is kept unchanged
until the system equilibrates at the new field value. Therefore
005 07 o8 %03 04 o5 06 hysteresis results fr(_)r_n trapping in Ioc_:al metastablg states
(©) A=0.2 (d) A=0.1 rather than a competition between the timescales of field and

spin dynamics.

R Y ' . Our MC simulations show that the hysteresis loop exhib-
?’720— ] ‘,';’\‘ its return-point memory, which characterizes loops in the
-} 5_‘-! L\ | RFIM [12] though not in the nearest-neighbor RBINI3].
glo— - ‘4 We have also studied the magnetization-jump distribution

functionsP(Am,H) [and P(n,H)] along the hysteresis loop.
0 For finite systems, these functions exhibit a strong depen-
0 o1 02 03 0 0.1 02 dence on théd value and the size of the field incremekt

0

() A=0.05 (f) A=0.025 The relevant parameter iép, whereN is the system size and
15 , 150 T . e o e :
\ p is the spin-flip probability when the magnetic field is
510 o 410k i changed fromH —H+A. For A> Ap,,~ N2 the magneti-
é zation jumps are averages over multiple interacting ava-
® s 4 b B lanches. In that case, the independent-spin approximation is
A \ valid, and theH-dependent distributions are described by the
0 0 binomial distribution. The plots d?(Am,H) vs Am exhibit a

0 0.1 02 0 0.05 0.1 crossover from a bell-shaped function to a monotonically
decaying function ablp is decreased. However, the binomial
FIG. 3. Analogous to Fig. 2, except that the valie0 is fixed  distribution does not provide a reasonable description of the
and A is varied. The different frames correspond(® A=1.0,p  numerical data forA ~Ap,, due to a breakdown of the
=0.603;(b) A=0.5, p=0.392;(c) A=0.2,p=0.162;(d) A=0.1,p  independent-spin approximation. In this limit, the SOC de-
=0.086;(e) A=0.05,p=0.051;(f) A=0.025,p=0.015. scription of Pazmandét al.[16] applies.

3(d)-3(f). The plots in Figs. @) and 3f) correspond taA

~ Apzz~0.03, and are consistent with power-law decay over ACKNOWLEDGMENT

a limited range. More generally, the crossover seen in Figs.

3(a)—3(f) with decrease iNp is qualitatively consistent with S.P. is grateful to Deepak Dhar for useful inputs regarding

the above scenario. the problems discussed here.
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