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We present results from Monte Carlo simulations of hysteresis in the zero-temperaturesT=0d dynamics of
the Sherrington-Kirkpatrick spin glass model. We study the statistics ofmagnetization-jumpssdenoted asDmd
in response to a time-dependent magnetic fieldHstd, which increases or decreases with constant incrementsD

asHstd→Hstd±D. In particular, we focus on the field dependence of theDm-distribution functionPsDm,Hd.
We formulate arguments to understand the variation ofPsDm,Hd along the hysteresis loop in the weak-
disorder limit.
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I. INTRODUCTION

An important nonequilibrium property of magnetic mate-
rials ishysteresis, i.e., the delayed response of a spin system
to a time-dependent magnetic fieldf1g. In many experimental
situations, the magnetic field is periodic in time withHst
+ t0d=Hstd, wheret0 is the time period. The plot of magneti-
zation per spinmstd vs Hstd is referred to as thehysteresis
loop. In pure ferromagnetic systems, hysteresis occurs be-
cause of the existence of metastable states in the vicinity of a
first-order phase transition. For example, the down state is
metastable forHssTd.H.0, where the metastability limit
HssTd depends on the temperatureT. The timescale of tran-
sition to the stable up statets depends onH, T, and the
intrinsic spin-flip timescaleti. Thus the system response is
determined by the competition between the experimental ti-
mescalest0d and ts. In the limit ts/ t0→0, the spins have
enough time to align with the external field and the magne-
tization exhibits a discontinuity atH=0. In this case, the
“hysteresis loop” is a step function. Whents/ t0,Os1d, the
field changes appreciably before the spins readjust, leading
to well-defined hysteresis loops. Finally, in the limitts/ t0
→`, the spins cannot respond to the field and no hysteresis
loops are observed at all.

TheT=0 limit is relevant in many experimental situations
f2,3g where the barriers to domain flipping are too large to be
overcome by fluctuations. Consider the two-state Ising
model for anN-spin systemhSij:

H = − Jo
ki j l

SiSj − Hstdo
i

Si, Si = ± 1, s1d

where J is the exchange coupling, andki j l denotes a sum
over nearest-neighbor pairs. ForHstd,0, all spins are
aligned in the stable stateSi =−1. As Hstd is increased, this
state continues to be metastable forHssT=0d=zJ.Hstd.0,
wherez is the coordination number. At T=0, the timescale
for escape from the metastable state ists=`. The local field
at each site,hi =Hstd−zJ, becomes positive forHstd.zJ and
the spin flips into the up state spontaneously, i.e., withts
=0 assuming that the intrinsic timescaleti ! t0. The opposite
scenario arises when the fieldHstd changes fromH.0 to

H,0. Thus the resultant hysteresis loop is rectangular, with
discontinuities inm at H= ±zJ.

Of course, real ferromagnets are not pure and often con-
tain impurities. Let us focus on the case of quenched disor-
der, which corresponds to the case of immobile impurities.
The free-energy landscape is drastically modified by the
presence of disorder, and is characterized by a large number
of metastable minima with a distribution of barrier heights
f4,5g. Consider theT=0 hysteresis of disordered systems,
where there are no fluctuation-induced transitions across
free-energy barriers. Transitions occur only when the change
in magnetic field eliminates a metastable state where the sys-
tem is trapped. The system then evolves to a neighboring
metastable state, and so on. Thus the rectangular loop of the
disorder-free magnet is replaced by a smoother loop consist-
ing of a series of magnetization jumps or avalanches, which
are referred to asBarkhausen noisef6,7g. Apart from ferro-
magnetic materials, a wide variety of experimental systems
such as martensitesf8g and superconducting filmsf9g exhibit
related phenomena.

In this paper, we focus on hysteresis and magnetization-
jump distributions in theT=0 dynamics of spin glasses. In
Sec. II, we review some studies ofT=0 hysteresis in model
disordered systems. In Sec. III, we present numerical results
obtained from Monte CarlosMCd simulations of hysteresis
in the Sherrington-KirkpatricksSKd spin glassf10g. In par-
ticular, we study magnetization-jump distributions along the
hysteresis loop. In Sec. III, we also present arguments to
understand the nature of these distributions at differentH
values. Finally, Sec. IV concludes this paper with a summary.

II. OVERVIEW OF RELEVANT RESULTS

Consider the Ising Hamiltonian with quenched disorder
and a time-dependent external field:

H = − o
i. j

JijSiSj − o
i=1

N

fHstd + HigSi, Si = ± 1, s2d

where we have introduced disorder viasad random exchange
couplings or bondsJij , and sbd a random magnetic fieldHi.
In Eq. s2d, we have allowed for the possibility of long-ranged
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exchange interactions. The Ising Hamiltonian does not have
intrinsic dynamics so we associate stochastic kinetics by
placing it in contact with a heat bathf11g. The appropriate
stochastic kinetics for the ferromagnet is Glauber spin-flip
kinetics, where an arbitrary spin is flipped asSi →−Si. For
T=0 dynamics, the spin flip is accepted only if the system
energy decreases. We consider a situation whereHstd is
changed slowly from −̀ →` sSi =−1→ +1 ∀ id or `
→−`sSi = +1→−1 ∀ id.

Let us first discuss the case of the nearest-neighbor
random-field Ising modelsRFIMd, whereJij =J when i, j are
nearest neighbors, and 0 otherwise. An important study of
theT=0 dynamics is due to Sethnaet al. f12g. In their study,
the magnetic field was changed adiabatically, i.e., till the
occurrence of the first spin-flip. They clarified the following
properties of hysteresis loops in the RFIM:

s1d The loops exhibitreturn-point memorysRPMd. As-
sume that the increasing fieldHstd is stopped at a valueH2,
and then decreased toH1. Now, if the field is again increased
to H2, the system returns to precisely the same state as be-
fore. The RPM property holds for all sub-loops, sub-sub-
loops, etc., in the original hysteresis loop.

s2d The hysteresis loops are characterized by avalanches,
corresponding to transitions between metastable states in the
energy landscape. Consider an increment in the external field
Hstd. Typically, a spin flipssSi →−Sid because of a change in
sign of the local field:hi =Jo jPLi

Sj +Hstd+Hi, whereLi refers
to the nearest neighbors of sitei. This spin flip modifies the
local fields at other sites, leading to an avalanche which stops
when no further spins remain to be flipped. These avalanches
are associated with Barkhausen noise observed in magnetic
materialsf6,7g.

s3d Sethnaet al. made a detailed study of the avalanche
statistics. LetsH

2 denote the variance of the Gaussian random
field in units ofJ2. For weak disorder withsH,sc, the hys-
teresis loop is discontinuous at some field valueHssHd due
to an infinite-sized avalanche. This is a remnant of the rect-
angular loop arising forsH=0, corresponding to the pure
ferromagnet. The infinite avalanche survives uptosH=sc,
and we denoteHsscd=Hc. For sH.sc, the hysteresis loop is
continuous and is characterized by small avalanches.

s4d The pointssc,Hcd is a critical point with a power-law
distribution of the avalanche sizes, Pss,sc,Hcd,s−t, where
sc.2.23J, t.1.6 for thed=3 RFIM. There are corrections
to scaling for ss ,Hd near ssc,Hcd, and the corresponding
Pssd exhibit power-law behavior up to a cutoff scale which
diverges asss ,Hd→ ssc,Hcd. Analogous statements hold for
the distribution of avalanche durationsf12g.

Next, consider the case of the random-bond Ising model
sRBIMd, whereHi =0 in Eq.s2d. An early study of hysteresis
in the nearest-neighbor RBIM with an adiabatic magnetic
field is due to Vives and Planesf13g. These authors under-
took d=2 MC simulations of this model with a GaussianJij
distribution:

PsJijd =
1

Î2pJ2
expF−

sJij − J0d2

2J2 G , s3d

with averageJ0 and varianceJ2. They found that the RBIM
does not exhibit the RPM property. This is because reverse

spin flips may occur during an avalanche as there are also
antiferromagneticsJij ,0d bonds in the system. These re-
verse flips destroy the partial ordering of metastable states
which results in the RPM property. Vives and Planes also
studied the avalanche distributions averaged over the entire
cycle, which we denote asPintss,Jd. They found results
analogous to those for the RFIM:s1d There is a critical value
Jc sin units ofJ0d wherePintss,Jcd,s−u, with u.1.45 for the
d=2 RBIM. s2d For J,Jc sweak disorderd, Pintss,Jd decays
slower than a power law withPint,s−uels sl.0d for small
values ofs. There is also a peak corresponding to an infinite
avalanche. On the other hand, forJ.Jc sstrong disorderd,
Pintss,Jd decays exponentially withs asPint,s−uels sl,0d.
Subsequently, Viveset al. f14g studiedT=0 hysteresis in a
range of disordered spin models, and confirmed that the
above scenario is rather universal.

Finally, let us consider hysteresis in spin glasses, e.g., the
RBIM with Gaussian disorder andJ0=0 in Eq. s3d. The
nearest-neighbor spin glass or the Edwards-Anderson model
f4g swith J0=0d corresponds to the strong-disorder limit in
the Vives-Planes studyf13g. Thus we expect the avalanche
distributions to decay exponentially in this case. It is also
relevant to study hysteresis in the SK spin glass model where
all spins interact with each other, and one might expect a
mean-field approach to be useful. In early work, Soukoliset
al. f15g demonstrated the existence of hysteresis in the SK
model by numerically studying the free-energy landscape.

In more recent work, Pazmandiet al. f16g sPZZd studied
T=0 hysteresis in the SK model with an adiabatic magnetic
field. PZZ argued that the SK model exhibitssself-organizedd
critical behavior, Pss,Hd,s−t with t.1.0, everywhere
along the hysteresis loop. This should be contrasted with the
RFIM and RBIM, where power-law behavior arises at a criti-
cal point in parameter space. We can paraphrase the PZZ
argument as follows. A spin flipSj →−Sj changes the local
field at sitei by 2Jij ,N−1/2. Therefore an avalanche occurs
when the external field is increased byDPZZ,N−1/2. Let
Dm=ksl /N denote the average change in the magnetization
due to the avalanche. Then,dm/dH,sksl /NdN1/2=N−1/2ksl.
The numerical results of PZZ showed thatdm/dH is smooth
everywhere, i.e., there is no system-sized avalanche. This
occurs whenksl,N1/2, so the scale of the distribution for all
H values is set by the system size rather than a tunable pa-
rameter. PZZ interpret this as a signature ofself-organized
criticality sSOCd.

Finally, we mention two recent works in this context.
Katzgraberet al. f17g have studiedreversal-field memory
effects in sad T=0 simulations of the nearest-neighbor spin
glass, andsbd experiments on thin films containing Co
-Fe2O3 particles. Further, Deutsch and Narayanf18g demon-
strated that multiple cycles are often necessary for loop clo-
sure in nearest-neighbor spin glasses if the external field is
cycled between two moderate values, i.e., the system is not
driven to saturation.

III. DETAILED RESULTS

As stated earlier, we focus onT=0 hysteresis in the SK
model here. However, our protocol for changing the mag-
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netic field is different from that of PZZf16g. In our study, the
magnetic field is incremented by a fixed amountD, in anal-
ogy with experiments. Then, the natural response variable is
the magnetization jumpDm, which consists of multiple or
single avalanches, depending on the value ofD. We investi-
gate the variation of the distributionPsDm,Hd along the hys-
teresis loop. In the limitN→`, we expectPsDm,Hd to ap-
proach a delta function. However, for finite systems, we find
that there is a strongH dependence which can be understood
quantitatively in the weak-disorder limit.

Let us now provide details of our MC simulations. We
study the SK Hamiltonian with spin-flip kinetics. The ex-
change coupling obeys the Gaussian distribution in Eq.s3d
with J0=0 and varianceJ̃=J/N1/2. At T=0, the energy scale
is set byJ. We will subsequently setJ=1, and all relevant
quantities will be measured in units ofJ. The initial state of
the system corresponds toSis0d=−1 ∀ i as Hs0d=−`. The
field is increased fromH→H+D, and the followingT=0
MC procedure is implemented. After each field increment,
we calculate the local fields:hi =o jJijSj +Hstd. A randomly
chosen unstable spin withhiSi ,0 is flipped to −Si. Depend-
ing on the value ofD, there may be a number of unstable
spins. This spin flip changes the local field at each site,
thereby affecting the stability of other spins. The local fields
are computed again and another spin withhiSi ,0 is flipped.
This process is continued till there are no sites remaining
with hiSi ,0. We designate the old and new configurations as
hSij and hSi8j, respectively. There are three relevant physical
quantities:s1d The magnetization jump, Dm=oisSi8−Sid /N.
s2d The total number of spin flips in either direction as a
fraction of the system size, which is denoted asn. s3d The
jump duration, or the number of MC stepssMCSd before the
system equilibrates in the new field.

The hysteresis loop can be closed by repeating the above
procedure in the opposite direction, i.e.,H=`→−`. Our
MC results were obtained for systems withN=1000 spins.
We have confirmed that the hysteresis loops and their prop-
erties remain unchanged for larger values ofN. The data
presented here is obtained as an average over 20 hysteresis
cycles for 800 disorder configurations. This statistics proves
adequate to obtain smooth numerical results, as we demon-
strate shortly.

Before proceeding, we compare our MC procedure with
that of PZZf16g. In the PZZ study, the magnetic field was
changed adiabatically, i.e., the magnetic field was increased
sor decreasedd until the least stablespin flipped. This results
in a spin-flip avalanche, and the statistics of these avalanches
displays SOC, as discussed earlier. The typical field incre-
ment required to trigger an avalanche isDPZZ,N−1/2. In our
study, the fixed parameterD may be either comparable to or
much larger thanDPZZ. Hence we use the termmagnetization
jump rather thanavalancheto characterize the system evo-
lution. For D@DPZZ, we measure the averaged statistics of
Na,D /DPZZ multiple interacting avalanches. This averaging
implies that the distributions of these jumps can be under-
stood in the framework of anindependent spin approxima-
tion. On the other hand, forD,DPZZ, our results are analo-
gous to those of PZZ, and earlier results by Bertotti and
Pasqualef19g. Thus this study is complementary to the work
of PZZ.

Let us first study the hysteresis loops. In the zero-disorder
sinfinite Dd limit, the spins are uncoupled and the corre-
sponding hysteresis loop is a step function. As the disorder
amplitude is increasedsor D is decreasedd, the loop opens out
due to trapping in local metastable states, which differ from
each other by small groups of spins. There is a distribution of
barrier heights separating these minima. Typically, configu-
rations in the free-energy landscape differ by clusters of
OsN1/2d spins, with an associated barrier energyEdis,N1/4 in
the SK modelf5g. The MC simulations of Mackenzie and
Young f20g demonstrate that the barrier distribution is ap-
proximately uniform up to this level. In the presence of a
constant magnetic fieldH, the energy associated with a spin
cluster isEmag,N1/4H, so thatEmag/Edis,H.

In Fig. 1sad, we plotm vs H for D=0.1,0.05,0.02,0.01 —
as expected, the hysteresis loops superpose. The loops are
smooth because of the averaging procedure. Each individual
realization is characterized by irregular steps which corre-
spond to discrete jumps. In Fig. 1sbd, we plot dm/dH vs H
for the data shown in Fig. 1sad. This plot quantifies the av-
erage magnetization jump at different field values. Finally, in
Fig. 1scd, we plotm vs H again forD=0.01. However, in this
case, the fields are reversed atH=0.5, 0.25, and the loops are
seen to exhibit the RPM property.

At this stage, it is relevant to query whether the shape of
the hysteresis loops can be understood in the framework of
mean-fieldsMFd theory. For the RFIM with long-ranged ex-
change interactions, there is an elegant MF argument due to
Sethnaet al. f12g which yields the loop shape and the critical
exponents. The situation is far more difficult for the SK spin
glass, as it is known that naive MF theory is not valid below
the Almeida-Thouless line in thesT,Hd planef5g. The naive
MF prediction for the local-field distribution in the SK spin
glass has the Gaussian formf21g:

FIG. 1. sad Hysteresis loops m vs Hd obtained fromT=0 MC
simulations of the SK spin glass in a magnetic field. Details of the
simulation are provided in the text. The figure superposes data for
D=0.1,0.05,0.02,0.01, as denoted by the specified line types.sbd
Plot of dm/dH vs H for the data shown insad. scd Hysteresis sub-
loops when the magnetic field is reversed atH=0.5,0.25. The in-
crement size isD=0.01.
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P̃shi,Hd =
1

Î2ps2
expF−

shi − Hd2

2s2 G , s4d

with variances2=qJ2. Here, the Edwards-Anderson order
parameterq is obtained fromfb=skBTd−1g

q =E
−`

` dz
Î2p

e−z2/2 tanh2fbsH + JÎqzdg. s5d

However, this Gaussian distribution is not even qualita-
tively reasonable atT=0. This is due toreplica-symmetry
breakingand has been studied extensivelyf5g. There are ar-
guments and simulationsf22–24g which demonstrate that

P̃shi ,Hd develops nonanalytic behavior athi =0. An empiri-

cal form for P̃shi ,Hd at T=0 is obtained as followsf23,24g:

P̃shi,Hd .
f uhiu

2ssHd2expF−
shi − Hd2

2ssHd2 G ,

f−1 = expS−
H2

2s2D +
Î2H

s
E

0

H/sÎ2sd
dxe−x2

. s6d

Here, the scale ofssHd is set byJ, andss0d.1.28f22g. The
functional form ofssHd is unknown and its dependence on
H and the order parameters are necessary inputs to compute
the hysteresis loop. Pazmandiet al. f16g have used heuristic
arguments to obtain weak bounds on the outer limit of the
hysteresis loop.

Next, let us discuss the magnetization-jump distributions
at different points along the loop. In Figs. 2sad–2sdd, we plot
MC data forPsx,Hd vs x swith x=Dm or nd with four dif-

ferent field strengths,H=−1.0,0.0,1.0,2.0. Here, the distribu-
tions correspond to the stepH→H+D, where D=1.0
@DPZZ,0.03 for N=1000. The distributions in Figs.
2sad–2sdd show a strongH dependence, with a crossover
from a bell-shaped function to a monotonically decaying
function. The distributionsPsDm,Hd and Psn,Hd show a
similar behavior withkDml, knl, as expected. For small val-
ues ofkDml or knl, as in Figs. 2scd and 2sdd, the data sets for
PsDm,Hd andPsn,Hd superpose. The nature of these distri-
butions depends onH, D, and the system sizeN. This can be
understood by the arguments presented below forPsDm,Hd.

When the field is increased fromH→H+D, the probabil-
ity of the local fieldhi changing sign fromhi ,0 to hi .0 is

p =E
0

`

dhifP̃shi,H + Dd − P̃shi,Hdg ; psH,Dd. s7d

In the strong-field limit, the magnetization jump consists of
multiple interacting avalanches and it is reasonable to as-
sume that the spins are approximately independent. Then, the
probability ofNDm spins changing sign is obtained from the
binomial distribution as

PsDmd =
N!

sNDmd ! Ns1 − Dmd!
pNDms1 − pdNs1−Dmd, s8d

with kDml=p. The distributionsPsDm,Hd in Fig. 2 are fitted
to this functional form, withp being determined from the
numerical data. It is seen that Eq.s8d provides a good de-
scription of PsDm,Hd at strong field amplitudes, where the
independent-spin approximation applies.

It is useful to approximate the binomial distribution for
largeN as followsf25g:

sad Gaussian limit: This arises forNp→` as N→`
sp nonzerod. Then, we obtain the Gaussian distribution:

PsDmd .Î N

2pps1 − pd
expF−

NsDm− pd2

2ps1 − pd G . s9d

The varianceps1−pd /N→0 as N→` and the distribution
becomes sharply peaked atDm=p.

sbd Poisson limit: This arises forNp finite as N→`
sp→0d. Then, Eq.s8d becomes the Poisson distribution:

PsDmd .
sNpdNDm

sNDmd!
e−Np. s10d

In a simulation involving a finite number of spinsN, one can
realize both the limiting cases in Eqs.s9d and s10d, depend-
ing on the values ofH and D. This is demonstrated by the
data in Fig. 2.

The independent-spin approximation breaks down at
weak fieldssor small Dd, where magnetization jumps arise
due to single avalanches. In that case, Eq.s8d is not a rea-
sonable description of theDm statistics. This is demonstrated
in Fig. 3, where we plotPsx,Hd vs x for H=0→D with D
=1.0,0.5,0.2,0.1,0.05,0.025. We see that Eq.s8d fits
PsDm,Hd rather well forD=1.0, 0.5. However, forD=0.2,
the binomial distribution is too sharply peaked in comparison
with the numerical data. The disagreement is even stronger
for smaller values ofD, and we do not plot Eq.s8d in Figs.

FIG. 2. Probability distributions,Psx,Hd vs x with x=Dm or n,
for the field incrementH→H+D. The system size wasN=1000,
andD=1.0. The solid line superposed on the data sets forPsDm,Hd
is the binomial distribution in Eq.s8d with p obtained fromkDml
for the numerical data. The different frames correspond tosad H
=−1.0, p=0.395; sbd H=0.0, p=0.603; scd H=1.0, p=0.019; sdd
H=2.0, p=0.001.
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3sdd–3sfd. The plots in Figs. 3sed and 3sfd correspond toD
,DPZZ,0.03, and are consistent with power-law decay over
a limited range. More generally, the crossover seen in Figs.
3sad–3sfd with decrease inNp is qualitatively consistent with
the above scenario.

IV. SUMMARY AND DISCUSSION

To summarize, we have studied hysteresis and
magnetization-jump distributions for theT=0 dynamics of
the SK spin glass in a time-dependent magnetic field. The
field is incremented in equal steps, and is kept unchanged
until the system equilibrates at the new field value. Therefore
hysteresis results from trapping in local metastable states
rather than a competition between the timescales of field and
spin dynamics.

Our MC simulations show that the hysteresis loop exhib-
its return-point memory, which characterizes loops in the
RFIM f12g though not in the nearest-neighbor RBIMf13g.
We have also studied the magnetization-jump distribution
functionsPsDm,Hd fandPsn,Hdg along the hysteresis loop.
For finite systems, these functions exhibit a strong depen-
dence on theH value and the size of the field incrementD.
The relevant parameter isNp, whereN is the system size and
p is the spin-flip probability when the magnetic field is
changed fromH→H+D. For D@DPZZ,N−1/2, the magneti-
zation jumps are averages over multiple interacting ava-
lanches. In that case, the independent-spin approximation is
valid, and theH-dependent distributions are described by the
binomial distribution. The plots ofPsDm,Hd vs Dm exhibit a
crossover from a bell-shaped function to a monotonically
decaying function asNp is decreased. However, the binomial
distribution does not provide a reasonable description of the
numerical data forD,DPZZ, due to a breakdown of the
independent-spin approximation. In this limit, the SOC de-
scription of Pazmandiet al. f16g applies.
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